

USEPE: U-SPACE SEPARATION IN EUROPE

1 December 2021
POLIS ANNUAL CONFERENCE

1. Few elements of context

What is the U-Space?

- A set of new **services** (Geo-awareness, flight authorization, traffic & weather information...)
- Supporting safe, efficient and secure access to airspace for large numbers of drones
- Relying on a high level of digitalisation and automation of functions and specific procedures

USEPE Consortium

2. What is the project about?

USEPE objectives

1. Propose, develop and evaluate a **Concept of Operations** and a set of **enabling technologies** aimed at ensuring the safe separation of drones in the **urban environment**.

USEPE objectives

2. Explore and develop machine learning algorithms to automate the safe separation and deconfliction.

Provide the U-space separation management system with artificial intelligence.

USEPE main topics to tackle

- Conflict detection Conflict resolution
- Airspace capacity
- Traffic demand
- Meteorology (micro weather)
- Airspace optimisation
- Ground structure (buildings, streets, open spaces)
- Availability of communications (obstacles)
- Geofenced/forbidden areas (fixed or sudden ones)

3. What has been done so far?

Analyse needs and requirements

- Survey & Interviews
- Validation workshop with 53 participants

Local authorities		
Aviation authorities		
U-space service providers		
Air navigation service providers		
Drone operators		
Drone manufacturers		
Urban logistics, retail, emergency responses		
Researchers		

4 criteria to evaluate separation methods

Identify & select Separation Methods

13 potential methods were identified & ranked to manage the safe separation of drones

- Flying at VLL
- In densely populated urban & suburban environments.

Hierarchy order	Separation method	Score
1	Density Based Airspace Management (Method 8)	0,47
2	Drone Corridors (Method 7)	0,23
3 = 2 (same score)	Geovectoring (Method 9)	0,23
4	Relating Airspace Structure and Capacity (Method 11)	0,07
	1,00	

Table 14: Hierarchy of design concepts for separation methods

Conclusion: Combination needed

Develop a new separation method: D2-C2 USEPE

New Separation Method

Dynamic Density Corridor Concept (D2-C2)

Airspace

- USSP defines the airspace structure
- Dynamic segments reconfigured based on traffic density.
- Considers drone performances for separation.
- Multi-layered segmentation in high density areas.

Corridors

• Higher-speed corridors with lower conflict risk.

Geovectoring

 General syntax for drone velocity and heading speed limitation.

Define scenarios for validation

LAST MILE DELIVERY

- 3 simultaneous parcels delivery => punctuality requirement
- Wind adverse situation => loss of separation
- Assign cells with different altitudes or decrease velocity

EMERGENCY FLIGHT

- Riot surveillance and emergency blood transfer => several simultaneous drone flights
- Unexpected emergency drone flight => exceed segments capacity, but priority
- Transfer of surveillance drones to other segments when required or creation of a new geo-fence segment

- Simultaneous surveillance of traffic jam & construction works
 Drones, background traffic, manned city security surveillance forces
- Air convection => wind turbulence in the vicinity of buildings
- Order landing or altitude increase

Develop a simulation tool: BlueSky

BlueSky source

Simulation Engine

Language

- Coded in Python3

Traffic simulation

- Dynamical model
- Aircraft performances
- Conflict detection
- Conflict resolution
- Autopilot

Control

- Commands (built-in)
- Scenario files
- Plug-ins (add new functionalities)

Graphic User Interface

Create a simulated city: Hannover

3D city graph: between buildings

3D city graph: above buildings

Corridor creation

Segment assignment

USEPE main challenges

- 1. Inclusion of **real turbulent wind fields** as part of the separation management processes.
- 2. Feasibility of using machine learning algorithms to optimize the separation methods.

4. What comes next?

- Complete simulations
- Develop algorithms
- Analyse results
- Provide an Exploratory Research Validation Report

Thank you!

WWW.USEPE.EU

WWW.linkedin.com/company/usepe-project

